#### **Controls Scope**

Karen S. White Controls Group Leader & Data Operations Manager 5/8/13





# **Integrated Control System**

- ICS Scope: Controls, Timing and Protection Systems
  Accelerator
  Instruments
  Target
  Conventional Facilities
  Test Facilities
- Large, distributed system based on the Experimental Physics and Industrial Control Systems (EPICS) toolkit and Control System Studio (CSS)
- EPICS provides a flexible, layered architecture and integrates a variety of front end platforms
- This scalable, distributed architecture allows:
  - new devices and functionality to be added as needed
  - growth to be managed by adding or upgrading CPUs
- Emphasis on commercial, configurable, collaborative solutions



#### **By the Numbers**

| VxWorks IOCs                     | ~170         |
|----------------------------------|--------------|
| Linux IOCs                       | ~100         |
| Windows IOCs                     | ~400         |
| PLCs                             | ~160         |
| Network Nodes                    | ~1200        |
| EPICS PVs                        | ~500K        |
| Archived EPICS PVs               | ~85K         |
| Archived EPICS data              | ~1.5 TB/year |
| Machine Protection System Inputs | ~1200        |



## **Organization Chart**



| Positions    |    |  |
|--------------|----|--|
| Management   | 1  |  |
| Professional | 21 |  |
| Technician   | 6  |  |

| Budget       | \$K   |
|--------------|-------|
| Labor        | 8094  |
| Procurements | 1983  |
| Total        | 10077 |



## Organization

2 Engr

Architecture Tools Development

System Architecture EPICS/CSS Alarms Archiver/Browser OPI/Web OPI













## Organization

2 Engr 2 Techs

**Protection Systems** 

Personnel & Target Protection Radiation Monitoring

Oxygen Deficiency Monitoring



Timing Machine Protection Chopper Control Custom Hardware









## **Spares Strategy**

- Established standards for hardware
  - Minimizes the number of supported modules
  - Allows for shared spares
  - Reduces unique maintenance and programming efforts
- Keep >= 10% spares on hand
- New designs address critical spares for custom hardware
  - Fiber/Fiber Fan-outs deployment FY13 FY14 (outage limited)
  - MPS Master Deployment summer 2013
  - Chopper power supply interface Deployment summer 2013



#### Maintenance

- Failures and performance tracked to guide preventative maintenance and upgrades
  - VME crate power supply and fans replacements summer 2013
  - Most PLC processors replaced 2010
  - − Upgraded selected VME IOCs (MVME2100  $\rightarrow$  MVME5500)
- Commercial computing equipment on planned refresh cycle
- Replacing non-standard front end controls interfaces with standard interface modules
  - In place on front end teststand
  - Production Deployment summer 2013



## Obsolescence



- Timing System
  - New Master prototype running in RFTF, production for accelerator FY14 (tested spare in place for old master)
  - Timing Receiver deployment FY13 FY16
  - Fiber/Copper Fan-outs Prototype in testing; production FY14
- MPS
  - Unable to fabricate new units due to hardware reaching end-of-life
  - Limited ability to repair existing platforms
  - Existing system overly complex, high maintenance
  - New system design, prototyping FY14 FY15

